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ABSTRACT

General multilevel nonlinear optimization problems arise in design of complex systems and can

be used as a means of regularization for multicriteria optimization problems. Here for clarity in

displaying our ideas, we restrict ourselves to general bilevel optimization problems, and we present

two solution approaches. Both approaches use a trust-region globalization strategy, and they can be

easily extended to handle the general multilevel problem. We make no convexity assumptions, but

we do assume that the problem has a nondegenerate feasible set. We consider necessary optimality

conditions for the bilevel problem formulations and discuss results that can be extended to obtain

multilevel optimization formulations with constraints at each level.
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1 Introduction

We are interested in nonlinear multilevel optimization (MLO) problems, in general, and bilevel

optimization (BLO) problems, in particular, for two related and important reasons. First, gen-

eral multilevel optimization problems arise in the course of decomposition of multidisciplinary

design optimization problems (see, for example, Sobieszczanski-Sobieski, James, and Dovi [15],

Sobieszczanski-Sobieski, James, and Riley [16], Sobieszczanski-Sobieski [14], Barthelemy [4], Padula

and Young [10]).

The other, related, application is the �eld of multicriteria (or multiobjective, or vector) op-

timization. Design of any feature of a complex system involves achieving a compromise among

several, possibly competing, objectives. For example, aeronautical design objectives include such

criteria as minimizing weight for a given performance, maximizing lift, �nding the shape with least

drag, achieving the least time trajectory between two points, and other objectives.

There are several current approaches to solving multicriteria optimization problems. One ap-

proach is to introduce a single criterion that somehow incorporates the many criteria of the problem

(see, e.g., Wood [19]). Another technique uses the notion of Pareto optimality to achieve a balance

between the objectives (see, for example, Sawaragi, Nakayama, and Tanino [12]). The approach

of goal programming selects one objective to serve as an optimization objective and turns the

other objectives into constraints by setting bounds or \goals" for them. Finally, a subset of multi-

level problems, known as lexicographic optimization problems, involves the notion of lexicographic

comparison; see, for instance, Ben-Israel, Ben-Tal, and Zlobec [5].

We consider yet another approach, namely, to restate the multiobjective problem as a multi-

level optimization problem. This approach has not been extensively used because, to the authors'

knowledge, e�cient algorithms for general nonlinear multilevel optimization have not yet been dis-

covered. In addition, due to the theoretical complexity of the problem, a theoretical basis for the

general problem has not been developed as yet. The general problem of MLO follows.

Let fm; . . . ; f1 be the problem objectives, arranged in the order of increasing signi�cance, i.e.,

f1 is the most important objective, while fm is the least important objective. Note that this

signi�cance does not need to be quanti�ed in any way other than the establishment of the order.

Then the formulation is:

Problem MLO:

minimize fm(xm)

subject to xm 2 argmin fm�1(xm�1)

. . .

subject to x2 2 argmin f1(x1),

where \argmin" denotes the set of minima of a particular fi, and f1; . . . ; fm : <n ! < are su�ciently

smooth. The formulation can be easily extended to include constraints, but in the scope of this

discussion we shall address unconstrained objectives.

Thus the MLO formulation gives us a way to \regularize" the ill-de�ned problem of multicriteria

optimization. Here the engineering insight will enter into de�ning the order in which the optimiza-

tion levels are stated. The reader will see that if the objective values of all the objectives except

the most important one were known at a solution to an MLO problem, then one would have a goal
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program. Thus, it is possible to view MLO as related to goal programming except that the order

of importance of the objectives needs to be speci�ed rather than goals for each objective value.

Existing work in multilevel and, in particular, bilevel optimization (see Vicente and Calamai

[18] for a review) deals only with functions under extremely strong assumptions of convexity and

has many theoretical di�culties. We are approaching this problem with cautious optimism because

in recent work (see Alexandrov [1], Alexandrov and Dennis [2], [3]), algorithms for multilevel

optimization of problems with special structure have been shown to exhibit global convergence

under reasonable assumptions.

In this paper we will use the general bilevel optimization problem to discuss issues in MLO.

First, we remark in passing that for the two objectives, there are two di�erent problems determined

by the assignment of the order to the criteria:

Problem 1: minimize f1(x)

subject to x 2 argmin ff2(y)g,

and

Problem 2: minimize f2(x)

subject to x 2 argmin ff1(y)g.

The two problems will almost certainly have di�erent answers. In fact, there are simple exam-

ples of one problem being well-posed, while the other is ill-posed. We contend that engineering

judgement and insight into the problem is likely to produce a correct or optimal order. In the

contrary case, establishing the right order is likely to lead to engineering insight.

We are proposing two formal algorithms for the bilevel and multilevel optimization problems.

One algorithm is an extension of the multilevel algorithms in Alexandrov [1] and it arrives from

the current approximation of the solution to the next approximation by computing a sequence of

solutions to the minimization subproblems restricted to smaller and smaller dimensional subspaces.

The second algorithm arrives at the next estimate of the solution by solving a sequence of local

optimization subproblems each of which will serve to set a local \goal" in de�ning the region of

su�cient decrease in the merit function for the �nal local optimization subproblem. We have a

new, promising, merit function that will allow us to evaluate the progress of the algorithm toward

a solution.

2 Nonlinear Programming Preliminaries

In this section we de�ne a number of concepts from unconstrained optimization, that enter both

into practical conditions imposed on the steps in an optimization algorithm and into algorithm con-

vergence analysis. We also brie
y describe the multilevel algorithms for nonlinear optimization on

which the algorithms proposed here are based. Consider the following unconstrained minimization

problem.

Problem UNC:

minimize f(x)

subject to x 2 <n,
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where f : <n ! < is continuously di�erentiable.

Newton's method and its variations form a standard class of local solution methods for UNC,

and they can be stated as follows:

1. Initialize;

2. Do until convergence:

Build a local model:

�c(s) = f(xc) +rf(xc)
Ts + 1

2
sTHcs;

Minimize �c(s) to obtain sc;

Set x+ = xc + sc;

3. End.

Here xc and x+ denote the current and the next approximation to a solution, respectively, and Hc

is an approximation to the Hessian of f at xc, but not necessarily the true Hessian.

Trust region algorithms form one of the major approaches designed to improve the global be-

havior of such local model based algorithms. At each iteration, a typical trust-region algorithm for

solving problem UNC �nds a trial step by solving the following trust-region subproblem approxi-

mately:

minimize f(xc) +rf(xc)
T s+

1

2
sTHcs

subject to ksk � �c;

where �c > 0 is the trust-region radius, and k � k denotes the `2 norm. The idea is to model the

objective function in a restricted region and to accept the trial step when the quadratic model

adequately predicts the behavior of the function, and to recompute the step in a smaller region if

it does not.

Detailed treatment of the trust-region approach to unconstrained optimization and nonlinear

equations can be found in Dennis and Schnabel [6], Sorensen [17], Mor�e [8], Mor�e and Sorensen [9],

Powell [7], and Shultz, Schnabel and Byrd[13].

Trust-region algorithms have been successfully extended to solve the general nonlinear con-

strained optimization problem. In particular, the local step in the successive quadratic program-

ming (SQP) method is found by computing a minimizer of the quadratic model of the Lagrangian

at the current point, subject to linearized constraints. A trust-region algorithm based on SQP

adds the trust-region constraint to the subproblem and additional constraints designed to ensure

that the trust-region constraint and the linearized constraints are consistent. We shall see that the

algorithms proposed here may be viewed as a generalization of the SQP approach to bilevel and

multilevel optimization.

2.1 Merit Functions

In order to evaluate a trial step, trust-region algorithms use merit functions, which are functions

related to the problem in such a way that the improvement in the merit function signi�es progress

toward the solution of the problem.

For unconstrained minimization, a natural choice for a merit function is the objective function

itself. Let

�c(s) = f(xc) +rf(xc)
Ts+

1

2
sTHcs
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denote the quadratic model of the merit function. We de�ne two related functions.

The actual reduction is de�ned as

aredc(sc) = f(xc)� f(xc + sc);

and the predicted reduction is de�ned as

predc(sc) = �c(0)� �c(sc)

= �rf(xc)
T (sc)�

1

2
sTc Hcsc;

so that the predicted reduction in the merit function is an approximation to the actual reduction

in the merit function.

The standard way to evaluate the trial step in trust-region methods is to consider the ratio of

the actual reduction to the predicted reduction. A value lower than a small predetermined value

causes the step to be rejected. Otherwise the step is accepted.

For nonlinear systems of equations, the norm of the residuals serves as a merit function. For the

constrained optimization, the merit function is some expression that involves both the objective

function and the constraints.

2.2 Fraction of Optimal Decrease and Fraction of Cauchy Decrease

To assure global convergence of a trust-region algorithm for problem UNC, the trial step is required

to satisfy a fraction of Cauchy decrease (FCD) condition. This mild condition means that the

trial step, sc, must predict at least a fraction of the decrease predicted by the Cauchy step, which

is the steepest descent step for the model within the trust region. We must have for some �xed

�1 > 0

pred(sc) = �c(sc)� �c(0) � �1[�c(s
CP
c )� �c(0)];

where

sCPc = ��CPc rf(xc) with

�CPc =

8<
:

krf(xc)k
2

rf(xc)THcrf(xc)
if

krf(xc)k
3

rf(xc)THcrf(xc)
� �c

�c
krf(xc)k

otherwise.

See Dennis and Schnabel [6], pp. 139|141, for details on the Cauchy point.

A stronger condition, the fraction of optimal decrease property (FOD), allows one to prove

stronger convergence results. A step sc is said to satisfy FOD if it predicts at least a fraction of

the decrease predicted by the optimal solution of the trust-region subproblem, i.e., for some �xed

�2 > 0 we have

pred(sc) = �c(sc)� �c(0) � �2[�c(s
OPT
c )� �c(0)];

where sOPTc solves the trust-region subproblem exactly.

The FCD condition is satis�ed by all variants of the dogleg method and by restricted subspace

methods, for example. The stronger FOD condition is satis�ed by most algorithms that attempt

to accurately minimize the local model on the trust region, for instance, by Levenberg-Marquardt

type methods.
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2.3 Convergence Results

Powell's global convergence theorem (see Powell [7]) for any unconstrained minimization trust-

region algorithm shows the power of trust-region globalization ideas. It states that if f is uniformly

continuously di�erentiable and fHig are only assumed to be uniformly bounded, then the sequence

of iterates generated by a FCD trust-region algorithm is well-de�ned and satis�es

lim inf
i!1

krf(xi)k = 0:

Sorensen [17] has shown stronger convergence results for trust-region algorithms with steps that

satisfy FOD. Speci�cally, he has shown that if the Hessian is Lipschitz continuous, and if exact

Hessians are used in the local models, then any limit point of the iterates satis�es second order

necessary conditions, i.e., has a positive semide�nite Hessian. Furthermore, under some reasonable

additional assumptions, the iteration sequence converges q-quadratically to a second order necessary

point for UNC.

Detailed treatment of the unconstrained minimization theory and practice can be found in Mor�e

[8], Mor�e and Sorensen [9], Sorensen [17], and Shultz, Schnabel and Byrd [13].

2.4 Multilevel Methods for Nonlinear Equations Equality Constrained Opti-

mization

The algorithms introduced here are based on the recently proposed class of multilevel algorithms

for equality constrained optimization and nonlinear equations (see Alexandrov [1], Alexandrov and

Dennis [2], [3]).

The algorithms of that class use trust regions as a globalization startegy, they have been shown

to be globally convergent under reasonable assumptions. They have the following characteristics:

� The constraints of the problem can be partitioned into blocks by the user in any manner

suitable to an application, or in any arbitrary manner at all.

� The analysis of the methods assumes certain standard smoothness and boundedness proper-

ties, but no other assumptions are made on the structure of the problem.

� The algorithms solve at each iteration progressively smaller dimensional subproblems to arrive

at the trial step.

� The trial steps computed by the algorithm are required to satisfy very mild conditions, both

theoretically and computationally. In fact, the substeps comprising the trial step can be

computed in the subproblems using di�erent optimization algorithms. The substeps are

only required to satisfy a mild decrease condition for the subproblems and a reasonable

boundedness condition|both satis�ed in practice by most methods of interest.

The proposed multilevel class of algorithms di�ers from the conventional algorithms in that its

major iteration involves computing an approximate solution of not one model over a single restricted

region, but of a sweep of models, each approximately minimized over its own restricted region. Each

model approximates a block of constraints and, �nally, the objective function, restricted to certain

subspaces. The algorithms proposed in this work follow this principle with equality constraints

replaced by one or more levels of optimization problems.
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3 Formulations and Algorithms

In this section we consider some formulations of the bilevel problem

Problem BLO:

minimize f2(x)

subject to x 2 argmin ff1(x)g

and discuss their properties, including necessary conditions for minima. Then we suggest algorithms

suitable for the speci�c formulations.

In our discussions we assume no convexity, unless speci�ed otherwise. We assume that all

functions are at least twice continuously di�erentiable and that f1 is bounded from below.

The formulation, which we call BLO, means that among the minima of f1 we wish to �nd a

point, for which the value of f2 is the lowest. There are three cases.

1. f1 is strictly convex. There is one global minimizer of f1, and, therefore, the feasible point is

the solution of the problem.

2. The set of minima of f1 is a set of disjoint points. Since algorithms for continuous nonlinear

optimization are guaranteed, in general, to �nd only local solution, this case, in e�ect, is

identical to the �rst one.

3. The set of minima of f1 has a nonempty relative interior.

Since the �rst two cases are degenerate as bilevel problems, we shall consider only the third one

from now on.

Suppose the point x� 2 <n solves the innermost problem of problem BLO, i.e., x� is an un-

constrained minimizer of f1(x). Let f
�
1 be the corresponding value of f1. Then our problem BLO

would seem equivalent to the following problem:

minimize f2(x)

subject to f1(x) = f�1 .

However, this formulation will not have a Lagrange multiplier at the minimum becauserf1(x�) =

0 and thus the �rst order necessary conditions will hold only if rf2(x�) = 0 coincidentally. There-

fore, the problem is ill-posed in this form.

3.1 Approach Based on First Order Necessary Conditions for a Solution

Now consider the following formulation based on the �rst order necessary condition for the inner-

most problem:

Problem FOC:

minimize f2(x)

subject to rf1(x) = 0.

Clearly, for a convex f1 the formulations BLO and FOC are equivalent. To study the relation

between the formulation in the general case, we introduce the notion of constraint quali�cations.
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In order to determine optimality in constrained optimization, it is necessary to study the behav-

ior of the objective function along feasible perturbations. Conditions that allow us to characterize

feasible perturbations completely are known as constraint quali�cations. Constraint quali�cations

may take di�erent forms, some of them purely theoretical. A common practical constraint quali�-

cation in nonlinear programming is regularity, which is the assumption of full rank for the Jacobian

of the constraint system. As we mentioned, regularity fails for the most obvious reformulation of

problem BLO.

For problem FOC, the Jacobian of the constraint system is r2f1(x). It is a square matrix,

positive semide�nite at a solution of problem BLO. We assume that the matrix is singular, for

otherwise the inner problem would have an isolated minimum, resulting in the degenerate case. We

claim that a reasonable constraint quali�cation for problems FOC and BLO is to require r2f1(x)

to have constant rank in a neighborhood of the solution. This assumption is a natural extension

of the full-rank assumption for rectangular matrices and is based on the results in continuity of

generalized inverses (see Campbell and Meyer [11], for example).

Let x� solve the bilevel optimization problem BLO. Assuming the constant rank constraint

quali�cation, it can be shown that the �rst order necessary conditions for an optimum of problem

BLO and problem FOC is:

rf2(x�) + �Tr2f1(x�) = 0;

rf1(x�) = 0;

r2f1(x�) is positive semide�nite.

We believe that adding the condition of positive semide�niteness of r2f2(x�) on the null space

of r2f1(x�) to the above conditions together with our constraint quali�cation will constitute the

second order necessary optimality conditions for problem BLO.

We also believe that for general nonlinear f1 and f2, if x� solves problem FOC and it is feasible

for problem BLO, then it also solves problem BLO.

Thus, it is reasonable to attack problem BLO by solving problem FOC if we ensure that the

solution is a minimum of f1 and therefore feasible for BLO. In practice, we propose to solve problem

FOC by the multilevel algorithm for equality constrained optimization introduced in Alexandrov

[1] (see also Alexandrov and Dennis [2], [3]). To measure progress toward a solution and to ensure

that it is feasible with respect to problem BLO, we propose to attempt two merit functions:

P1(x; �) = f2(x) + �f1(x)

and

P2(x; �) = f2(x) + �Trf1(x) + �f1(x)
2:

The �rst merit function is an analog of the objective function used as a merit function in uncon-

strained minimization. The second one is an analog of the augmented Lagrangian used as a merit

function in constrained optimization.

A possible drawback of this approach is that second order information may be necessary for the

for the algorithm. On the positive side, the analysis of the multilevel algorithms for constrained

optimization [1] will apply to the approach after minor modi�cations. Both in theory and in

practice, the steps would have to satisfy the mild FCD condition for the subproblem that they solve.

In addition, this formulation is easy to extend to the general multilevel optimization problem.
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3.2 Approach Based on Successive Decrease Conditions

Now that we have the �rst order necessary conditions for a solution of problem BLO, let us consider

an approach that will require no explicit reformulation of the problem.

Sorensen [17] has shown that if we use the exact Hessians and steps that satisfy the FOD

condition in a trust-region algorithm for unconstrained minimization, then the algorithm converges

to a point that satis�es the �rst order necessary conditions for a minimum. Thus, it is reasonable

to expect|though it must be veri�ed|that if we apply an FOD method to our problem, we should

have convergence to a point satisfying �rst order necessary conditions.

The algorithm we propose for bilevel optimization can be stated as follows:

Compute the trial step for problem BLO to produce an FOD on the quadratic model of f2 subject

to producing FOD on the quadratic model of f1.

A version that imposes a milder FCD type condition on the step is also of interest.

In practice, the algorithm would be implemented in the following way. The inner problem would

be solved by a conventional trust-region approach to unconstrained minimization to produce the

FOD \goal" for the quadratic model of f1 about the current point. Then the outer problem would

be solved in the null space of r2f1(xc) subject to the condition that the step produce the FOD

condition in the model of f2.

This approach can be extended to any number of levels in a natural way. Clearly, if the objective

values of all the objectives except the most important one were known at a solution to an MLO

problem, then one would have a goal program. One can think of our algorithm as a way to set

goals adaptively for each iteration.

We propose to use the same two merit functions as in the previous subsection.

4 Concluding Remarks

We proposed two approaches to solving the bilevel optimization problem, which can be easily

extended to general multilevel problem with an arbitrary number of levels and with constraints.

The main di�culties of the multilevel formulations have always been the possible intractability of

the feasible set for the problem and in showing the existence of search directions under reasonable

assumptions. We proposed a constraint quali�cation which is a reasonable extension of the standard

constraint quali�cation for constrained nonlinear optimization. This quali�cation has allowed us

to establish �rst order necessary conditions for a solution of the bilevel problem. These conditions

give us hope that the algorithms will be of practical use. Our next step is thorough practical testing

of the algorithms combined with further theoretical investigations.
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